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Comment on Asymptotic Properties of 
Coupled Langevin Equations 
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The asymptotic behavior of coupled Langevin equations in the limit of weak 
noise is studied by general normal form techniques, in the vicinity of a pitchfork 
bifurcation. The non-Gaussian behavior of the critical variable is established. 
The conditional probability of the noncritical variable around the center 
manifold is determined. It is shown that in certain cases the distribution of this 
later variable may be non-Gaussian. 
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In Ref. 1 the a sympto t i c  behav io r  of coupled  Langevin  equat ions  undergo-  
ing a cusp b i furca t ion  was s tudied in the l imit  of weak noise. If U =  
(U~,..., UN) are the variables ,  the equa t ions  are of the form 

O,U = L U  + N ( U )  + ~l/2F(t; U)  (1) 

where N ( U )  are non l inear  de terminis t ic  terms,  F( t ;  U)  s tands  for the 
addi t ive  and mul t ip l ica t ive  noise (e measures  the intensi ty of the noise),  
and  the N x N  matr ix  L is in d i agona l  form L ~ =  7~c5~, 71 = 0 ,  7 ~ < 0  for 
~>~2. It was then shown work ing  with the F o k k e r - P l a n c k  equa t ion  
associa ted  to (1) and  using scaled var iables  to implement  a s ingular  per tur-  
ba t ion  technique tha t  the cri t ical  var iable  UI has n o n - G a u s s i a n  fluc- 
tuat ions,  while the var iables  U~ (which are l inear ly  the fast var iables)  
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exhibit Gaussian or non-Gaussian behavior, depending on the non- 
linearities in (1), which were classified accordingly. 

The purpose of this comment is twofold. First, we want to show that 
the results concerning the behavior of U can be obtained by general nor- 
mal form techniques (2'3) in which one deals directly with the Langevin 
equations. The method avoids the use of scalings in the intermediate steps 
and gives as a result the appropriate scaled variables which appear in the 
passage to the weak noise limit (,--* 0). As a second point we discuss the 
different behaviors of the variables U~, a ~> 2, and we show that they can be 
understood as generic and nongeneric (i.e., of higher codimension) 
situations arising in the problem. Indeed, in the generic situation the 
variables U~, a ~> 2, exhibit a Gaussian scaling, while among the nongeneric 
cases of codimension 2 one can find in one case a non-Gaussian scaling for 
a fast variable Us, a >~ 2, which corresponds to a non-Gaussian behavior of 
this variable. 

We consider then the stochastic differential equations (1) with F(t; U) 
of the form 

where 

F(t; U) = L(1)(/)U + M(t; U) + D(t) 

N N 

U =  ~ U:e: ;  D ( t ) =  ~ D~(t) G 

et = (1,0 ..... 0), e 2 : ( 0  , 1,0 ..... 0) .... e N = ( 0  ..... 0, 1) 

LIll(t) is an N x  N matrix 

N 

L(1)( t )  e~ = E L(~ l)(t) e/~ 
f l=l  

and 

(2) 

N ( U ) =  ~ N(~)(U), M ( t ; U ) =  ~ M(~)(t;U) 
r>~2 r>~2 

with 

N " ) ( U )  = ~ u (~) U~, .-. U~ e~ 

M")(~; U) -- ~ G?~...~(t) G ~  U ~  
(3) 

We have L G =y~e~ and we assume nonresonant conditions between the 
eigenvalues 7~. The matrix elements L(~)(t), the vIrl~;~l... ~r,tt~,, and D~(t) are 
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Gaussian white noises with known correlations; in particular, the additive 
noise D(t) has correlations 

{D~(t) Da(t')} = Q.aa(t- t') (4) 

We shall work here assuming that Eqs. (1) are to be interpreted in the 
Stratonovic sense and consequently we are allowed to use the normal rules 
of calculus, as we shall do. This is no restriction, since if another inter- 
pretation is used, (4'5) we can always rewrite the equations in the 
Stratonovic sense, adding supplementary terms (this can be done, for 
instance, using the techniques in Ref. 6). 

In order to have a cusp bifurcation as a codimension 1 situation in (1), 
we assume the symmetry UI -+ -U1 in the absence of noise. This symmetry 
plays no special role in the method, which works in its absence, and we 
only impose it to have a leading cubic term (i.e., a cusp bifurcation) in the 
normal form, which guarantees the existence of the stationary probability if 
its coefficient is negative. We are looking for the asymptotic behavior of U 
for times t>> sap 12~J-1, c~>2, and to obtain it we make the ansatz (which 
is proved in Refs. 2 and 3) that U can be asymptotically expressed in terms 
of a critical variable C in the form (U~ 1J = 6~1, r/= ev2) 

N N 

u =  s c r 2 Y. c r Z vF (t) e, (5) 
r>~l  ~=i r~>O ~ = l  

and that C obeys an equation of the form 

~t C= ~ f[r]crq-ri 2 g[r](l) Cr 
r>~2 r>~O 

(6) 

where {U~rl, f Er]} are constants to be determined and {V~r?(t), get1(/)} 
are stochastic processes to be determined. One obtains equations for these 
quantities by direct substitution of (5) and (6) in (1) and by identification 
of the left- and right-hand sides of (1) at each order [.L r], where j is the 
order' in ~/ (0 or 1) and r is the order in C. In doing this, one calculates the 
left-hand side of (1) as 

OU 
c~, U = on, C - ~  + cS, U (7) 

where cft stands for derivatives with respect to the explicit t dependence in 
(5), which is contained in the V~rl(t). We have at order [0, r] an equation 
of the form 

__~)e~U[r~ __-/E~_ # E ~ ] b ~  J ~1, 1 ~ N  (8) 
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where I~ rl is a quantity constructed in terms of {U~ ~], f[~l, s <  r}, which 
means that we can try to solve (8) by recursion in r using U~ {~ = 6 ~  and 
f[13 =0.  The symmetry U~ ~ - U 1  implies: 

(a) I~2~]=0, n>~l (then we take f [ ~ ] - - 0 ,  n>~l, U~2"]=0) and 
i~2.] r  c~/> 2, which gives U~ 2"3 = - ( 7 c ~ )  - 1  I~ 2~]. 

(b) I~2"+11r (then we takef[2"+13=I~ 2"+~], U}a~+~]=O, n~>l) 
and I~2"+~1=0, c~>~2, which gives U~2"+t]=O. We know now the parts 
independent of ~/ (i.e., in the absence of noise) of (5) and (6), which are 

#,C= y~ f[2~+1]C2"+~ +001) (9) 
n~>l 

U = C e , +  Z C2" Z U~2"l%+O(~l) (10) 
n~>l c~>~2 

Let us look now at the noise-dependent terms in (1). At order [1, 0] 
one obtains 

{o] t (63t--'/~) Vz ( ) = O z ( t  ) g [ ~  (11) 

Since 7~=0,  we take g[~ V~~ and for c~>~2 we solve 
(11) to obtain 

fo V~{~ = e r~' dr' e -7~"D~(t'), ~ >~ 2 

At order [ l ,  r] we shall have an equation of the form 

(~t-- ' ;~) v~r]( / )~-J[r ] (  t ) -  g[r](l) 6~1 

(12) 

(13) 

where J~r](t)is constructed with {U~'], s<<.r+ 1; f [ ' ] ,  s<~r; V~{'](t), s<r; 
g[S](t), s<r} and we see that we can again solve (13) by recursion in r 
(U~ s] and f t'] are already known from the noise-independent calculation). 
In summary, we have that (5) and (4) are of the form (we write V~ 
for V~ ~ ) 

U1 = C (14) 

U~ = F~(C) + tlV~(t ) + O(rlC) (15) 

~,C = - ~ C  3 + r/Dl(t ) + O(C 5, riG ) (16) 

(O,-- 7~) V~(t)=D~(t), ~>~2 (17) 

Here U~=F~(C)=p,C+O(C 4) is obtained from (10) and is just the 
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equation of the center manifold Uo:=F:~(U~), ~>/2. (7) In terms of the 
original quantities in (2), one has 

p~= -(7~) -1 u(2~,,, c~>2 

N //(2) l Fb/(3 ) ~ 1 //(2) p ; l l ]  
p=2 

(19) 

Equation (16) is now the (stochastic) normal form of our initial system (1) 
at the critical point. In the neighborhood of the instability the form of (16) 
will be c~ ,C=I~C-2C3+ tlD~(t), where /~ is an unfolding parameter. The 
stationary probability for C will exist if 2 > 0 and is given by 

2 s 1 ( S  4 ) )v 
p~t(C)-  l/4K(1/4) exp - - - C 4  ; s 4 -  2Qll 

(20) 

This expression shows that C 4 = O(e), i.e., if we put C = ~1/4c, then 

2s  
/~st(c) = el/4p~t(C) = - -  e x p ( - s 4 c  4) (21) 

F(1/4) 

is independent of ~. On the other hand, from (17) we obtain the time- 
independent probability in the stationary state 

ps,(V~) = r~ e x p [ - r ~  ~; - ( 2 2 )  
Q~ 

Using (15), now we can obtain the conditional probability p~t(U~ [C) as 

P~t( U~ ] C) = f dV~ P'st(V:~) (~( U~. - F~(C) - q V:,) (23) 

which gives (2 ~< c~ ~< N) 

Pst(Uo: I C) = ~ exp - r ~  (24) 

This shows that the distribution of the variables U~ around the center 
manifold U~ = F~(C) is Gaussian. This is in fact a very general result, which 
is not a consequence of the approximation we took for (15) and we have 
proved 13) it to any order O(C n) [at higher orders the width of the Gaussian 
in (24) becomes C dependent, a fact used as an assumption in Ref. 8]. 
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From (23) we see now that the marginal probability is given by 
[Fa(C ) = p~ C 2 -~- O(C4)] 

Pst(U~,)=fdCdV~p'~t(V~)6(U~,-p~CZ-eW2V~)Pst(C ) (25) 

with p~t(C) given by (20). Since the scaling of C is C---,s1/4c [see (21)], we 
see in (25) that the appropriate scaling for Ua is 

U a = g,1/2uot = gl/2(p~C2 q- V~:) (26) 

Then/~st(Ua) = eWZPst(U~,) is independent of e and is given by 

fist(b/a) = f dr  dV~ Ptst (Va)  6(u~ - jo~c 2 - Va) Pst(C) (27)  

which is explicitly [from (21) and (22)] 

2r=s= 1 
ff~t(u~)- 7 / " ( ] - / 4 )  f oo dvexpE-r2~(u=- v2)2- s4va] (28) 

where we put s~,=s (p~) 1/2, taking Pa > 0  for simplicity. This integral has 
the value 

fist(Us) = ( - -U~)  1/2 K1/4(~c~ u 2) e x p ( -  {au ] ) ;  ua < 0 (29) 

/~st (b/a) 1/2 2 = u~, EKu4({aU~, ) + x/2 rdv4({~,u2)] e x p ( -  {~u~),2 2 . u~>0  (30) 

with 

4 r 2 ~4 2 r~ ~(2a a + ra) 
{~=2(s~+r2)  ' ~ a -  2(s 4+r~) 

Here KI/4 and I1/4 a r e  Bessel functions. (9'1~ 
The case we have been discussing is the generic one and we see that 

here Us has a Gaussian scaling el/2 [see (27) and (28)]. However, the 
explicit expression for/}st(ua) is not strictly a Gaussian, as can be seen in 
(29) and (30). One has two kinds of nongeneric cases appearing as 
codimension 2 situations: (a) 2 = 0, and (b) Pa :~ 0 for some ~ ~> 2. 

In case (a), Eq. (16) becomes 

8, C = - 2 ' C  5 + ~lDl(t) + O(C v, ~C) (31) 
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with stationary solution ( f o r ) J >  0) 

Pst(C) =~ 1~7g exp 3eQ~l/ 
( 3 2 )  Q ),C6~ /-,(1 )(3Q,I~ 1/6 

A - t = f  dCexp 3QlI;=-~-- \~,  ] 

The scaling is now C =  el/6c, which makes 

~st(C)=el/6pst(C)=A exp 3--~11 ] (33) 

independent of e. Equation (25) becomes 

( 2'c6.~ (34) Pst(U~')=A f dcdV~p;t(V~')'5(U~-~I/3p~'c2-el/2V~)exp 3QII] 

We see now that the appropriate scaling for U~ is U~ = e~/3u~, which makes 
the argument of the 6-function in (34) become 

e ~ / 3 ( u ~  - p ~ c  2 - e ~/6 V~) = e ~/3(u~ - p ~ c  2) 

in the e ~ 0 limit. Then (34) gives for fist(U~)= eJ/3p~t(U~,) the e-independent 
expression [using ~ dV:, p'~(V~)= l ]  

( (351 /~t(u~) = A fdc3(u:,-p~cZ)exp 3Qll] 

This gives for p~ > 0 that/~s,(U~) = 0 for u~ < 0, and for u~ > 0 one obtains 

( , 3 )  
)o u~ (36) /Ss,(U~) - (p~u:,)l/2 exp 2 3p~,Qll 

which corresponds indeed to the non-Gaussian scaling U~ = e~/3u~. 
In the second nongeneric case (b) one has p~ = 0 and the equation for 

the center manifold U~=F~(C)=p'~,C4+O(C 6) starts at order four. 
Equation (25) is now replaced by 

Pst(U~,)=f dCdV~,p~t(V~)c~( , 4 ' U~,-p~C -e~/2V~,)p~(C) (37) 

with p~t(C) given again by (20), which shows that the scaling for C is 
C=~/4c, which causes the argument of the 6-function to become 
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U~-8p'~c4-el/2V~= U~-el/2V~ in the e--+0 limit. Then (37) reduces to 
[-using ~ dC pst(C) = 1 with p,t(C) given here by (21)] 

Pst(U~) = f dV~ P'st(V~) c ] ( U ~ -  el/2 V~) (38) 

In this situation Us is decoupled from U1 = C, and from (38) we see that its 
scaling is Gaussian, U~=el/2u~, which gives for ~st(u~)=~/2pst(U~) the 
Gaussian probability 

/~st(U~) Pst(Uc~) = - - =  e x p ( -  2 2 = ' r ~ u ~ )  ( 3 9 )  

We finally remark that at the dominant order in the weak noise limit 
that we have been considering the multiplicative noise in (1) plays no role. 
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